4.6 Article

GABA transporter 1 tunes GABAergic synaptic transmission at output neurons of the mouse neostriatum

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 586, 期 23, 页码 5665-5678

出版社

WILEY
DOI: 10.1113/jphysiol.2008.161943

关键词

-

资金

  1. German Research Council (Deutsche Forschungsgemeinschaft) [Gr 986/9-1, MU 809/7-2]

向作者/读者索取更多资源

GABAergic medium-sized striatal output neurons (SONs) provide the principal output for the neostriatum. In vitro and in vivo data indicate that spike discharge of SONs is tightly controlled by effective synaptic inhibition. Although phasic GABAergic transmission critically depends on ambient GABA levels, the role of GABA transporters (GATs) in neostriatal GABAergic synaptic transmission is largely unknown. In the present study we aimed at elucidating the role of GAT-1 in the developing mouse neostriatum (postnatal day (P) 7-34). We recorded GABAergic postsynaptic currents (PSCs) using the whole-cell patch-clamp technique. Based on the effects of NO-711, a specific GAT-1 blocker, we demonstrate that GAT-1 is operative at this age and influences GABAergic synaptic transmission by presynaptic and postsynaptic mechanisms. Presynaptic GABA(B)R-mediated suppression of GABA release was found to be functional at all ages tested; however, there was no evidence for persistent GABA(B)R activity under control conditions, unless GAT-1 was blocked (P12-34). In addition, whereas no tonic GABA(A)R-mediated conductances were detected in SONs until P14, application of a specific GABA(A)R antagonist caused distinct tonic outward currents later in development (P19-34). In the presence of NO-711, tonic GABA(A)R-mediated currents were also observed at P7-14 and were dramatically increased at more mature stages. Furthermore, GAT-1 block reduced the median amplitude of GABAergic miniature PSCs indicating a decrease in quantal size. We conclude that in the murine neostriatum GAT-1 operates in a net uptake mode. It prevents the persistent activation of presynaptic GABA(B)Rs (P12-34) and prevents (P7-14) or reduces (P19-34) tonic postsynaptic GABA(A)R activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据