4.6 Article

Differential origin of reticulospinal drive to motoneurons innervating trunk and hindlimb muscles in the mouse revealed by optical recording

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 586, 期 21, 页码 5259-5276

出版社

WILEY
DOI: 10.1113/jphysiol.2008.158105

关键词

-

资金

  1. Medical Faculty of University of Oslo
  2. Norwegian Research Council
  3. Christopher and Dana Reeve Foundation

向作者/读者索取更多资源

To better understand how the brainstem reticular formation controls and coordinates trunk and hindlimb muscle activity, we used optical recording to characterize the functional connections between medullary reticulospinal neurons and lumbar motoneurons of the L2 segment in the neonatal mouse. In an isolated brainstem-spinal cord preparation, synaptically induced calcium transients were visualized in individual MNs of the ipsilateral and contralateral medial and lateral motor columns (MMC, LMC) following focal electrical stimulation of the medullary reticular formation (MRF). Stimulation of the MRF elicited differential responses in MMC and LMC, according to a specific spatial organization. Stimulation of the medial MRF elicited responses predominantly in the LMC whereas stimulation of the lateral MRF elicited responses predominantly in the MMC. This reciprocal response pattern was observed on both the ipsilateral and contralateral sides of the spinal cord. To ascertain whether the regions stimulated contained reticulospinal neurons, we retrogradely labelled MRF neurons with axons coursing in different spinal funiculi, and compared the distributions of the labelled neurons to the stimulation sites. We found a large number of retrogradely labelled neurons within regions of the gigantocellularis reticular nucleus (including its pars ventralis and alpha) where most stimulation sites were located. The existence of a mediolateral organization within the MRF, whereby distinct populations of reticulospinal neurons predominantly influence medial or lateral motoneurons, provides an anatomical substrate for the differential control of trunk and hindlimb muscles. Such an organization introduces flexibility in the initiation and coordination of activity in the two sets of muscles that would satisfy many of the functional requirements that arise during postural and non-postural motor control in mammals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据