4.6 Article

Does elimination of afferent input modify the changes in rat motoneurone properties that occur following chronic spinal cord transection?

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 586, 期 2, 页码 529-544

出版社

WILEY
DOI: 10.1113/jphysiol.2007.141499

关键词

-

资金

  1. NINDS NIH HHS [NS 16333, P01 NS016333] Funding Source: Medline

向作者/读者索取更多资源

The purpose of this study was to determine the effects of 6-8 weeks of chronic spinal cord isolation (SI, removal of descending, ascending and afferent inputs), compared with the same duration of spinal cord transection (ST, removal of descending input only) on hindlimb motoneurone biophysical properties. Adult female Sprague-Dawley rats were placed into three groups: (1) control (no removal of inputs), (2) ST and (3) SI. The electrophysiological properties from sciatic nerve motoneurones were recorded from deeply anaesthetized rats. Motoneurones in SI rats had significantly (P < 0.01) lower rheobase currents and higher spike after-hyperpolarization amplitudes and input resistances compared with motoneurones in control rats. A higher percentage (chi(2), p = 0.01) of motoneurones in SI than control rats demonstrated frequency-current (f-I) relationships consistent with activation of persistent inward currents. Motoneurone steady state f-I slopes determined by increasing steps of 500 ins current pulses were significantly lower (P < 0.02) in SI than control rats. Motoneurone spike frequency adaptation measured using 30 s square-wave current injections (1.5-3.0 nA above the estimated rhythmic firing threshold), was similar for control and SI motoneurones. Changes in motoneurone properties following SI did not differ from ST. These findings indicate that the removal of afferent and ascending inputs along with descending inputs has little additional affect on motoneurone properties than removal of descending inputs alone. This study is the first to demonstrate that intact ascending and afferent input does not modify the effects of spinal transection on basic and rhythmic firing properties of rat hindlimb motoneurones.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据