4.5 Article

The growth of ultra-thin zirconia films on Pd3Zr(0001)

期刊

JOURNAL OF PHYSICS-CONDENSED MATTER
卷 26, 期 22, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0953-8984/26/22/225003

关键词

zirconia; oxide surfaces; alloys; scanning tunneling microscopy; oxidation

资金

  1. Austrian Science Fund (FWF) [F45]
  2. Austrian Science Fund (FWF) [F45] Funding Source: Austrian Science Fund (FWF)

向作者/读者索取更多资源

Despite its importance in many areas of industry, such as catalysis, fuel cell technology and microelectronics, the surface structure and physical properties of ZrO2 are not well understood. Following the successful growth of ultra-thin zirconia on Pt3Zr(0001) (Antlanger et al 2012 Phys. Rev. B 86 035451), we report on recent progress into ZrO2 thin films, which were prepared by oxidation of a Pd3Zr(0001) crystal. Results from scanning tunneling microscopy (STM), Auger electron spectroscopy (AES), x-ray photoelectron spectroscopy (XPS) as well as density-functional theory (DFT) are presented. Many sputter-annealing cycles are required for preparation of the clean Pd3Zr alloy surface, because oxygen easily dissolves in the bulk. By oxidation and post-annealing, a homogeneous ultra-thin ZrO2 film was obtained. This is an O-Zr-O trilayer based on cubic ZrO2(111). Using STM images corrected for distortion and creep of the piezo scanner the in-plane lattice parameter was determined as (351.2 +/- 0.4) pm, slightly contracted with respect to the cubic ZrO2 bulk phase. The oxide forms an overlayer that is either incommensurate or has a very large superstructure cell (a = 8.3 nm); nevertheless its rotational orientation is always the same. In contrast to ultrathin zirconia on Pt3Zr(0001), where the uppermost substrate layer is pure (but reconstructed) Pt, STM and XPS suggest a stoichiometric Pd3Zr below the oxide. The oxide film binds to the substrate mainly via bonds between oxygen and the Zr atoms in the substrate. The ultra-thin oxide shows large buckling in STM, confirmed by DFT calculations, where the buckling of the Zr layer can exceed 100 pm. Compared to the ZrO2 film on Pt3Zr(0 0 0 1), the oxide on Pd3Zr(0001) has the advantage that the substrate below does not reconstruct, leading to a homogeneous oxide film.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据