4.5 Article

The role of van der Waals interactions in the adsorption of noble gases on metal surfaces

期刊

JOURNAL OF PHYSICS-CONDENSED MATTER
卷 24, 期 42, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0953-8984/24/42/424211

关键词

-

资金

  1. US Department of Energy [DE-FG02-10ER16165]

向作者/读者索取更多资源

Adsorption of noble gases on metal surfaces is determined by weak interactions. We applied two versions of the nonlocal van der Waals density functional (vdW-DF) to compute adsorption energies of Ar, Kr, and Xe on Pt(111), Pd(111), Cu(111), and Cu(110) metal surfaces. We compared our results with data obtained using other density functional approaches, including the semiempirical vdW-corrected DFT-D2. The vdW-DF results show considerable improvements in the description of adsorption energies and equilibrium distances over other DFT based methods, giving good agreement with experiments. We also calculated perpendicular vibrational energies for noble gases on the metal surfaces using vdW-DF data and found excellent agreement with available experimental results. Our vdW-DF calculations show that adsorption of noble gases on low-coordination sites is energetically favored over high-coordination sites, but only by a few meV. Analysis of the two-dimensional potential energy surface shows that the high-coordination sites are local maxima on the two-dimensional potential energy surface and therefore unlikely to be observed in experiments; this provides an explanation of the experimental observations. The DFT-D2 approach with the standard parameterization was found to overestimate the dispersion interactions, and to give the wrong adsorption site preference for four of the nine systems we studied.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据