4.5 Article

Study on the electronic structure and hydrogen adsorption by transition metal decorated single wall carbon nanotubes

期刊

JOURNAL OF PHYSICS-CONDENSED MATTER
卷 24, 期 18, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0953-8984/24/18/185505

关键词

-

向作者/读者索取更多资源

The ground state geometry and electronic structure of various 4d transition metal (TM) atom (Y, Zr, Nb and Mo) decorated single wall carbon nanotubes (SWCNTs) are obtained using density functional theory and the projector augmented wave (PAW) method. We found a systematic change in the adsorption site of the transition metal atom with increasing number of d electrons. We also predicted that Y and Zr decorated SWCNTs are metallic whereas Nb and Mo decorated SWCNTs are semiconducting. From detailed electronic structure and Bader charge analysis we found that the systematic variation of the adsorption site with the number of d electrons is related to the decreasing amount of charge transfer from the TM atom to the SWCNT along the 4d series. We have also studied the hydrogen adsorption capabilities of these decorated SWCNTs to understand the role of transition metal d electrons in binding the hydrogen molecules to the system. We found that metallic SWCNT C TM systems are better hydrogen adsorbers. We showed that the hydrogen adsorption by a TM decorated SWCNT will be maximum when all the adsorptions are physisorption and that the retention of magnetism by the system is crucial for physisorption.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据