4.6 Article

Enhancement in blood-tumor barrier permeability and delivery of liposomal doxorubicin using focused ultrasound and microbubbles: evaluation during tumor progression in a rat glioma model

期刊

PHYSICS IN MEDICINE AND BIOLOGY
卷 60, 期 6, 页码 2511-2527

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0031-9155/60/6/2511

关键词

focused ultrasound; brain drug delivery; blood brain barrier; blood tumor barrier; dynamic contrast enhanced MRI; pharmacokinetic model

资金

  1. NIH [P01CA174645, P41EB015898, P41RR019703, R01EB003268]

向作者/读者索取更多资源

Effective drug delivery to brain tumors is often challenging because of the heterogeneous permeability of the 'blood tumor barrier' (BTB) along with other factors such as increased interstitial pressure and drug efflux pumps. Focused ultrasound (FUS) combined with microbubbles can enhance the permeability of the BTB in brain tumors, as well as the blood-brain barrier in the surrounding tissue. In this study, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was used to characterize the FUS-induced permeability changes of the BTB in a rat glioma model at different times after implantation. 9L gliosarcoma cells were implanted in both hemispheres in male rats. At day 9, 14, or 17 days after implantation, FUS-induced BTB disruption using 690 kHz ultrasound and definity microbubbles was performed in one tumor in each animal. Before FUS, liposomal doxorubicin was administered at a dose of 5.67 mg kg(-1). This chemotherapy agent was previously shown to improve survival in animal glioma models. The transfer coefficient K-trans describing extravasation of the MRI contrast agent Gd-DTPA was measured via DCE-MRI before and after sonication. We found that tumor doxorubicin concentrations increased monotonically (823 +/- 600, 1817 +/- 732 and 2432 +/- 448 ng g(-1)) in the control tumors at 9, 14 and 17 d. With FUS-induced BTB disruption, the doxorubicin concentrations were enhanced significantly (P < 0.05, P < 0.01, and P < 0.0001 at days 9, 14, and 17, respectively) and were greater than the control tumors by a factor of two or more (2222 +/- 784, 3687 +/- 796 and 5658 +/- 821 ng g(-1)) regardless of the stage of tumor growth. The transfer coefficient K-trans was significantly (P < 0.05) enhanced compared to control tumors only at day 9 but not at day 14 or 17. These results suggest that FUS-induced enhancements in tumor drug delivery are relatively consistent over time, at least in this tumor model. These results are encouraging for the use of large drug carriers, as they suggest that even large/late-stage tumors can benefit from FUS-induced drug enhancement. Corresponding enhancements in Ktrans were found to be variable in large/late-stage tumors and not significantly different than controls, perhaps reflecting the size mismatch between the liposomal drug (similar to 100 nm) and Gd-DTPA (molecular weight: 938 Da; hydrodynamic diameter:. 2 nm). It may be necessary to use a larger MRI contrast agent to effectively evaluate the sonication-induced enhanced permeabilization in large/late-stage tumors when a large drug carrier such as a liposome is used.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据