4.5 Article

Magnetism in graphene due to single-atom defects: dependence on the concentration and packing geometry of defects

期刊

JOURNAL OF PHYSICS-CONDENSED MATTER
卷 21, 期 19, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0953-8984/21/19/196002

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft (DFG) [Kr-1805/8-1 (SPP 1801)]

向作者/读者索取更多资源

The magnetism in graphene due to single-atom defects is examined by using spin-polarized density functional theory. The magnetic moment per defect due to substitutional atoms and vacancy defects is dependent on the density of defects, while that due to adatom defects is independent of the density of defects. It reduces to zero with decrease in the density of substitutional atoms. However, it increases with decrease in density of vacancies. The graphene sheet with B adatoms is nonmagnetic, but with C and N adatoms it is magnetic. The adatom defects distort the graphene sheet near the defect perpendicular to the sheet. The distortion in graphene due to C and N adatoms is significant, while the distortion due to B adatoms is very small. The vacancy and substitutional atom (B, N) defects in graphene are planar in the sense that there is in-plane displacement of C atoms near the vacancy and substitutional defects. Upon relaxation the displacement of C atoms and the formation of pentagons near the vacancy site due to Jahn-Teller distortion depends upon the density and packing geometry of vacancies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据