4.5 Article

Geometry, electronic structure and thermodynamic stability of intrinsic point defects in indium oxide

期刊

JOURNAL OF PHYSICS-CONDENSED MATTER
卷 21, 期 45, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0953-8984/21/45/455801

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft

向作者/读者索取更多资源

Intrinsic point defects in indium oxide, including vacancies, interstitials as well as antisites, are studied by means of first-principles calculations within density functional theory using the generalized gradient approximation together with on-site corrections. Finite-size effects are corrected by an extrapolation procedure in order to obtain defect formation energies at infinite dilution. The results show that all intrinsic donor defects have shallow states and are capable of producing free electrons in the conduction band. This applies in particular to the oxygen vacancy. Since it has also a low formation energy, we find that the oxygen vacancy should be the major donor in this material explaining the n-type conductivity as well as the non-stoichiometry of indium oxide. In addition, we show that there are a wealth of oxygen dumbbell-like defects which are thermodynamically relevant under oxidizing conditions. Finally, we discuss defect induced changes of the electronic structure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据