4.5 Article

An optimized configuration interaction method for calculating electronic excitations in nanostructures

期刊

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0953-8984/20/5/055211

关键词

-

向作者/读者索取更多资源

The configuration interaction method has been widely used to calculate electronic excitations in nanostructures, but it suffers from a slow rate of convergence with the number of configurations in the basis set and from the inability to select a priori the most important configurations. The optimized configuration interaction method presented here removes the limitations of the conventional approach by identifying at the outset the configurations that are most relevant for describing electronic excitations. We show that the 'best' configurations are remarkably different from the configurations that one would expect on the basis of the single-particle energy ladder, and that a small, optimized set of configurations predicts excitation energies with accuracy comparable to that for much larger, non-optimized sets of configurations. This approach opens the way to a new generation of configuration interaction methods where the configurations are pre-selected using heuristic search methods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据