4.5 Article Proceedings Paper

Computational studies of conductivity in wide-band-gap semiconductors and oxides

期刊

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0953-8984/20/6/064230

关键词

-

向作者/读者索取更多资源

The ability to control conductivity is essential for design and fabrication of (opto)electronic devices. Such conductivity control has traditionally been very difficult in wide-band-gap semiconductors, and native point defects have often been invoked to explain these problems. State-of-the-art first-principles calculations based on density functional theory have been used to elucidate these issues. Approaches for overcoming the 'band-gap problem', including the LDA + U method, allow more accurate comparisons and predictions of defect levels. The methodology is illustrated with the case of native point defects in zinc oxide. Computations reveal that the prevailing n-type conductivity cannot be attributed to native defects; it must thus be caused by impurities that are unintentionally incorporated. Hydrogen is shown to be an excellent candidate for such an impurity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据