4.6 Article

The role of cathodic current in plasma electrolytic oxidation of aluminium: current density 'scanning waves' on complex-shape substrates

期刊

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1361-6463/aad979

关键词

plasma electrolytic oxidation; coating uniformity; aluminium alloy; scanning wave effect

资金

  1. EPSRC [EP/P025021/1] Funding Source: UKRI

向作者/读者索取更多资源

This paper focuses on the factors that influence the surface distribution of the current density during plasma electrolytic oxidation of 2024 Al alloy under alternating polarisation. It was found that employing the combined current mode, including relatively long (100-2000 ms) pulse trains, unproved coating uniformity even when the electrolyser provided a severe nonuniform primary electric field. An experimental investigation employing a sectioned sample showed that the nonuniform distribution of the primary electric field could be compensated by the changes in the coating properties induced by previous cathodic polarisation. Temporary changes in the secondary distribution of current density across the sample surface (attributed to the coating properties) caused dynamic redistribution of the anodic current density during the following AC pulse train, resulting in the so-called 'scanning wave' effect, i.e. migration of the maximum current density along the sample surface. Factorial experimental design, finite element modelling and analysis of the transient current-voltage curves were applied. A mechanistic explanation underlying the considered phenomenon has been suggested. In addition, the increase in plasma electrolytic oxidation efficiency under soft sparking conditions is considered as 'electrocatalysis' of anodic oxidation by previous cathodic treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据