4.6 Article

Radiative effects in plasmonic aluminum and silver nanospheres and nanorods

期刊

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0022-3727/48/18/184004

关键词

aluminum; plasmon; radiative damping; nanoparticle

资金

  1. US Department of Energy, Office of Basic Energy Science [DE-FG02-09ER16109]
  2. NDSEG graduate fellowship programme
  3. Office of the Provost, the Office for Research, and Northwestern University Information Technology

向作者/读者索取更多资源

We explore localized surface plasmon resonances in small (5-30 nm radius) aluminum and silver nanoparticles using classical electrodynamics simulations, focusing on radiative (farfield scattering) effects and the unique characteristics of aluminum as a plasmonic material. In Al spheres, higher-order plasmon resonances (e.g. quadrupoles) are significant at smaller sizes (> 15 nm) than in Ag spheres. Additionally, although the plasmon width is minimized at a radius of about 15 nm for both materials, the Al plasmon linewidth (similar to 1.4 eV) for the dipole mode is much larger than that observed in Ag (similar to 0.3 eV). The radiative contribution to damping dominates over non-radiative effects for small (5-20 nm) Al spheres (> 95%) whereas for similar size Ag spheres damping is almost entirely attributed to the bulk dielectric function (non-radiative). For Al nanorods the linewidths can be narrowed by increasing aspect ratio such that for an aspect ratio of 4.5, the overall Al (0.75 eV) linewidth is reasonably close to that of the same size Ag rod (0.35 eV). This narrowing arises from frequency dispersion in the real part of the Al dielectric function, and is associated with a 65% (1.5 to 0.5 eV) decrease in the radiative contribution to the linewidth for Al. Concurrently, an increase in the non-radiative width occurs as the aspect ratio increases and the plasmon tunes to the red. This demonstrates that anisotropy can be used as a parameter for controlling Al plasmon dephasing where the composition of the plasmon linewidth (radiative or non-radiative) can be tailored with aspect ratio. Overall, these data suggest that localized surface plasmon resonance dephasing mechanisms in Al nanostructures are inherently different from those in the noble metals, which could allow for new applications of plasmonic materials, tunable plasmon lifetimes, and new physics to be observed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据