4.6 Article

Perspectives on atmospheric-pressure plasmas for nanofabrication

期刊

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0022-3727/44/17/174023

关键词

-

资金

  1. NSF [CBET-0746821]
  2. Camille Dreyfus Teacher-Scholar Awards Program
  3. AFOSR

向作者/读者索取更多资源

Low-pressure, low-temperature plasmas are widely used for materials applications in industries ranging from electronics to medicine. To avoid the high costs associated with vacuum equipment, there has always been a strong motivation to operate plasmas at higher pressures, up to atmospheric. However, high-pressure operation of plasmas often leads to instabilities and gas heating, conditions that are unsuitable for materials applications. The recent development of microscale plasmas (i.e. microplasmas) has helped realize the sustainment of stable, non-thermal plasmas at atmospheric pressure and enable low-cost materials applications. There has also been an unexpected benefit of atmospheric-pressure operation: the potential to fabricate nanoscale materials which is not possible by more conventional, low-pressure plasmas. For example, in a high-pressure environment, nanoparticles can be nucleated in the gas phase from vapour (or solid metal) precursors. Alternatively, non-thermal, atmospheric-pressure plasmas can be coupled with liquids such as water or ethanol to nucleate and modify solution-phase nanoparticles. In this perspective paper, we review some of these recent efforts and provide an outlook for the rapidly emerging field of atmospheric-pressure plasmas for nanofabrication.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据