4.6 Article

Raman study of correlation between defects and ferromagnetism in graphite

期刊

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0022-3727/44/8/085001

关键词

-

资金

  1. National Natural Science Foundation of China [10705047, 10775171, 11075197, 20771057]
  2. National Basic Research Program of China [2010CB934503, 2010CB832903]

向作者/读者索取更多资源

The variation of ferromagnetism induced by C-12(+) ion implantation in highly oriented pyrolytic graphite was systematically studied by using Raman spectroscopy in conjunction with magnetic moment measurements and annealing treatments. It was found that the magnetization of the implanted sample was closely correlated with the density of the defects, which was characterized by the Raman spectra, produced by the implantation. It is clear that by using consecutive implantation steps at different energies to increase the vacancy defects in the implanted layer, the magnetization of the sample increases with the number of the implantation steps until the fourth step of implantation, which causes the near surface layer to be highly disordered or amorphous, weakening the magnetic coupling and thus resulting in the decrease in magnetization. The annealing treatments of the sample indicate that the ferromagnetism induced by the implantations is stable at room temperature. However, when the sample is annealed at 473K (the Wigner energy release temperature), the density of vacancies and interstitials is abruptly decreased and the magnetism induced by the implantations is extinguished. This finding gives a clear indication of the key role of the defects produced by C+ ion implantation in graphite.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据