4.2 Article

Optimal control for generating quantum gates in open dissipative systems

出版社

IOP Publishing Ltd
DOI: 10.1088/0953-4075/44/15/154013

关键词

-

资金

  1. EU
  2. Deutsche Forschungsgemeinschaft, DFG [SFB 631]
  3. Bavarian excellence network QCCC

向作者/读者索取更多资源

Optimal control methods for implementing quantum modules with least amount of relaxative loss are devised to give best approximations to unitary gates under relaxation. The potential gain by optimal control fully exploiting known relaxation parameters against time-optimal control (the alternative for unknown relaxation parameters) is explored and exemplified in numerical and in algebraic terms: for instance, relaxation-based optimal control is the method of choice to govern quantum systems within subspaces of weak relaxation whenever the drift Hamiltonian would otherwise drive the system through fast decaying modes. In a standard model system generalizing ideal decoherence-free subspaces to more realistic scenarios, openGRAPE-derived controls realize a CNOT with fidelities beyond 95% instead of at most 15% for a standard Trotter expansion. As additional benefit their control fields are orders of magnitude lower in power than bang-bang decouplings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据