4.6 Article

Transient-chaos induced directed transport in a spatially-open Hamiltonian system

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1751-8113/43/34/345101

关键词

-

向作者/读者索取更多资源

We study the autonomous Hamiltonian dynamics of non-interacting particles trapped initially in one well of a symmetric multiple-well washboard potential. The particles interact locally with an anharmonic oscillator acting as an energy deposit. For a range of interaction strengths, the particles gain sufficient energy during a chaotic transient to escape from the well and afterwards settle onto regular (rotational) dynamics. Strikingly, microcanonical ensembles of initial conditions that are unbiased with respect to the washboard coordinate nevertheless give rise to net directed motion. We demonstrate that for unbiased spatially localized initial conditions, violation of parity prevents the existence of pairs of counter-propagating trajectories within the ensemble, despite the time-reversibility symmetry of the equations of motion, allowing for a nonzero current. Recent studies have shown that particle current may be induced in other systems with preserved spatial symmetry by an external periodic but asymmetric driving force, however, averaging over the phase of the latter yields zero current. The system we propose is novel in that averaging over the phase of the oscillator still yields nonzero current. Furthermore, no mixed phase space is required, and chaos is needed only in an initial stage of the dynamics to guide trajectories from the interior of separatrices onto sustained integrable rotational motion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据