4.6 Article

Mapping between dissipative and Hamiltonian systems

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1751-8113/43/37/375003

关键词

-

向作者/读者索取更多资源

Theoretical studies of nonequilibrium systems are complicated by the lack of a general framework. In this work we first show that a transformation recently introduced by Ao (2004 J. Phys. A: Math. Gen. 37 L25) is related to previous works of Graham (1977 Z. Phys. B 26 397) and Eyink et al (1996 J. Stat. Phys. 83 385), which can also be viewed as the generalized application of the Helmholtz theorem in vector calculus. We then show that systems described by ordinary stochastic differential equations with white noise can be mapped to thermostated Hamiltonian systems. A steady-state of a dissipative system corresponds to the equilibrium state of the corresponding Hamiltonian system. These results provide a solid theoretical ground for corresponding studies on nonequilibrium dynamics, especially on nonequilibrium steady state. Mapping permits the application of established techniques and results for Hamiltonian systems to dissipative non-Hamiltonian systems, those for thermodynamic equilibrium states to nonequilibrium steady states. We discuss several implications of this work.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据