4.8 Article

Multipartite Entangled Spatial Modes of Ultracold Atoms Generated and Controlled by Quantum Measurement

期刊

PHYSICAL REVIEW LETTERS
卷 114, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.114.113604

关键词

-

资金

  1. Engineering and Physical Sciences Research Council [EP/I004394/1, 1378634, 1242145] Funding Source: researchfish
  2. EPSRC [EP/I004394/1] Funding Source: UKRI

向作者/读者索取更多资源

We show that the effect of measurement backaction results in the generation of multiple many-body spatial modes of ultracold atoms trapped in an optical lattice, when scattered light is detected. The multipartite mode entanglement properties and their nontrivial spatial overlap can be varied by tuning the optical geometry in a single setup. This can be used to engineer quantum states and dynamics of matter fields. We provide examples of multimode generalizations of parametric down-conversion, Dicke, and other states; investigate the entanglement properties of such states; and show how they can be transformed into a class of generalized squeezed states. Furthermore, we propose how these modes can be used to detect and measure entanglement in quantum gases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据