4.8 Article

Significant Reduction of Lattice Thermal Conductivity by the Electron-Phonon Interaction in Silicon with High Carrier Concentrations: A First-Principles Study

期刊

PHYSICAL REVIEW LETTERS
卷 114, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.114.115901

关键词

-

资金

  1. S3TEC, an Energy Frontier Research Center - U.S. Department of Energy, Office of Basic Energy Sciences [DE-FG02-09ER46577]
  2. Air Force Office of Scientific Research Multidisciplinary Research Program of the University Research Initiative (AFOSR MURI) via Ohio State University

向作者/读者索取更多资源

The electron-phonon interaction is well known to create major resistance to electron transport in metals and semiconductors, whereas fewer studies are directed to its effect on phonon transport, especially in semiconductors. We calculate the phonon lifetimes due to scattering with electrons (or holes), combine them with the intrinsic lifetimes due to the anharmonic phonon-phonon interaction, all from first principles, and evaluate the effect of the electron-phonon interaction on the lattice thermal conductivity of silicon. Unexpectedly, we find a significant reduction of the lattice thermal conductivity at room temperature as the carrier concentration goes above 10(19) cm(-3) (the reduction reaches up to 45% in p-type silicon at around 10(21) cm(-3)), a range of great technological relevance to thermoelectric materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据