4.6 Article

A non-Hermitian PT symmetric Bose-Hubbard model:: eigenvalue rings from unfolding higher-order exceptional points

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1751-8113/41/25/255206

关键词

-

向作者/读者索取更多资源

We study a non-Hermitian PT symmetric generalization of an N-particle, two-mode Bose-Hubbard system, modeling for example a Bose-Einstein condensate in a double well potential coupled to a continuum via a sink in one of the wells and a source in the other. The effect of the interplay between the particle interaction and the non-Hermiticity on characteristic features of the spectrum is analyzed drawing special attention to the occurrence and unfolding of exceptional points (EPs). We find that for vanishing particle interaction there are only two EPs of order N + 1 which under perturbation unfold either into [(N + 1)/2] eigenvalue pairs (and in the case of N + 1 odd, into an additional zero-eigenvalue) or into eigenvalue triplets (third-order eigenvalue rings) and (N + 1) mod 3 single eigenvalues, depending on the direction of the perturbation in parameter space. This behavior is described analytically using perturbational techniques. More general EP unfoldings into eigenvalue rings up to (N + 1)th order are indicated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据