4.6 Article

A Global Analysis of Sverdrup Balance Using Absolute Geostrophic Velocities from Argo

期刊

JOURNAL OF PHYSICAL OCEANOGRAPHY
卷 44, 期 4, 页码 1213-1229

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/JPO-D-12-0206.1

关键词

Circulation/ Dynamics; Large-scale motions; Ocean circulation

向作者/读者索取更多资源

Using observations from the Argo array of profiling floats, the large-scale circulation of the upper 2000 decibars (db) of the global ocean is computed for the period from December 2004 to November 2010. The geostrophic velocity relative to a reference level of 900 db is estimated from temperature and salinity profiles, and the absolute geostrophic velocity at the reference level is estimated from the trajectory data provided by the floats. Combining the two gives the absolute geostrophic velocity on 29 pressure surfaces spanning the upper 2000 db of the global ocean. These velocities, together with satellite observations of wind stress, are then used to evaluate Sverdrup balance, the simple canonical theory relating meridional geostrophic transport to wind forcing. Observed transports agree well with predictions based on the wind field over large areas, primarily in the tropics and subtropics. Elsewhere, especially at higher latitudes and in boundary regions, Sverdrup balance does not accurately describe meridional geostrophic transports, possibly due to the increased importance of the barotropic flow, nonlinear dynamics, and topographic influence. Thus, while it provides an effective framework for understanding the zero-order wind-driven circulation in much of the global ocean, Sverdrup balance should not be regarded as axiomatic.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据