4.6 Article

Internal Waves and Mixing in the Marginal Ice Zone near the Yermak Plateau

期刊

JOURNAL OF PHYSICAL OCEANOGRAPHY
卷 40, 期 7, 页码 1613-1630

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/2010JPO4371.1

关键词

-

资金

  1. Research Council of Norway [178641/S30]
  2. IPY [176096/S30]
  3. current measurements north of Svalbard [178919/S30]

向作者/读者索取更多资源

Observations were made of oceanic currents, hydrography, and microstructure in the southern Yermak Plateau in summer 2007. The location is in the marginal ice zone at the Arctic Front northwest of Svalbard, where the West Spitsbergen Current (WSC) carries the warm Atlantic Water into the Arctic Ocean. Time series of approximately 1-day duration from five stations (upper 520 m) and of an 8-day duration from a mooring are analyzed to describe the characteristics of internal waves and turbulent mixing. The spectral composition of the internal-wave field over the southern Yermak Plateau is 0.1-0.3 times the midlatitude levels and compares with the most energetic levels in the central Arctic. Dissipation rate and eddy diffusivity below the pycnocline increase from the noise level on the cold side of the front by one order of magnitude on the warm side, where 100-m-thick layers with average diffusivities of 5 x 10(-5) m(2) s(-1) lead to heat loss from the Atlantic Water of 2-4 W m(-2). Dissipation in the upper 150 m is well above the noise level at all stations, but strong stratification at the cold side of the front prohibits mixing across the pycnocline. Close to the shelf, at the core of the Svalbard branch of the WSC, diffusivity increases by another factor of 3-6. Here, near-bottom mixing removes 15 W m 22 of heat from the Atlantic layer. Internal-wave activity and mixing show variability related to topography and hydrography; thus, the path of the WSC will affect the cooling and freshening of the Atlantic inflow. When generalized to the Arctic Ocean, diapycnal mixing away from abyssal plains can be significant for the heat budget. Around the Yermak Plateau, it is of sufficient magnitude to influence heat anomaly pulses entering the Arctic Ocean; however, diapycnal mixing alone is unlikely to be significant for regional cooling of the WSC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据