4.8 Article

Intrinsic Charge Separation and Tunable Electronic Band Gap of Armchair Graphene Nanoribbons Encapsulated in a Double-Walled Carbon Nanotube

期刊

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
卷 4, 期 8, 页码 1328-1333

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jz400037j

关键词

-

资金

  1. Alexander von Humboldt Foundation of Germany
  2. Department of Energy [DE-FC52-06NA26274]

向作者/读者索取更多资源

Recent synthesis of nanocomposite structures of graphene nanoribbons (GNRs) encapsulated in a carbon nanotube (CNT) has opened a new avenue for exploring new functionalities for applications in nanotechnology. This new class of carbon nanocomposites is expected to possess electronic properties beyond those offered by the constituent parts of nanotubes and nanoribbons; unveiling such new properties and understanding the underlying physics are among the most pressing issues in the study of these promising materials. Here, we report on first-principles calculations of the electronic properties of armchair GNRs encapsulated in a zigzag double-walled CNT. This unique structural configuration produces an intrinsic charge separation with electrons and holes localized in the outer tube and the ribbon, respectively, while the inner tube remains charge-neutral, forming an n-type/intrinsic/p-type semiconducting heterojunction due to the staggered lineup of the band structures of the constituent parts. The electronic band gap of the nanocomposite can be tuned sensitively by the changing width of encapsulated GNRs. Such intrinsic charge separation and widely tunable electronic properties without doping or an external field make this class of new carbon nanocomposites promising candidates for photovoltaic and electronics applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据