4.8 Article

Microscopic Insights into the Electrochemical Behavior of Nonaqueous Electrolytes in Electric Double-Layer Capacitors

期刊

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
卷 4, 期 8, 页码 1260-1267

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jz4002967

关键词

-

资金

  1. Fluid Interface Reactions, Structures, and Transport (FIRST) Center, an Energy Frontier Research Center
  2. U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences
  3. DOE [DE-FG02-06ER46296]
  4. Directorate For Engineering
  5. Div Of Chem, Bioeng, Env, & Transp Sys [852353] Funding Source: National Science Foundation

向作者/读者索取更多资源

Electric double-layer capacitors (EDLCs) are electrical devices that store energy by adsorption of ionic species at the inner surface of porous electrodes. Compared with aqueous electrolytes, ionic liquid and organic electrolytes have the advantage of larger potential windows, making them attractive for the next generation of EDLCs with superior energy and power densities. The performance of both ionic liquid and organic electrolyte EDLCs hinges on the judicious selection of the electrode pore size and the electrolyte composition, which requires a comprehension of the charging behavior from a microscopic view. In this Perspective, we discuss predictions from the classical density functional theory (CDFT) on the dependence of the capacitance on the pore size for ionic liquid and organic electrolyte EDLCs. CDFT is applicable to electrodes with the pore size ranging from that below the ionic dimensionality to mesoscopic scales, thus unique for investigating the electrochemical behavior of the confined electrolytes for EDLC applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据