4.8 Article

Improving the Accuracy of Hybrid Meta-GGA Density Functionals by Range Separation

期刊

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
卷 2, 期 21, 页码 2810-2817

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jz201170d

关键词

Molecular Structure; Quantum Chemistry; General Theory

资金

  1. Air Force Office of Scientific Research [FA9550-11-0078]

向作者/读者索取更多资源

The Minnesota family of exchange-correlation functionals, which consists of meta generalized gradient approximations (meta-GGAs) and global-hybrid meta-GGAs, has been successful for density functional calculations of molecular structure, properties, and thermochemistry, kinetics, noncovalent interactions, and spectroscopy. Here, we generalize the functional form by using range-separated hybrid meta-GGA exchange. We optimize a functional, called M11, with the new form against a broad database of energetic chemical properties and compare its performance to that of several other functionals, including previous Minnesota functionals. We require the percentage of Hartree-Fock exchange to be 100 at large interelectronic distance, and we find an optimum percentage of 42.8 at short range. M11 has good across-the-board performance and the smallest mean unsigned error over the whole test set of 332 data; it has especially good performance for main-group atomization energies, proton affinities, electron affinities, alkyl bond dissociation energies, barrier heights, noncovalent interaction energies, and charge-transfer electronic excitation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据