4.8 Article

Predicting Organic Crystal Lattice Energies with Chemical Accuracy

向作者/读者索取更多资源

A fast, fragment-based hybrid many-body interaction model is used to optimize the structures of five small-molecule organic crystals (with fixed experimental lattice parameters) and predict their lattice energies with accuracies of 2-4 kJ/mol compared to experiment. This model treats individual molecules in the central unit cell and their short-range two-body interactions quantum mechanically, while long-range electrostatics and many-body induction are treated with a classical polarizable force field. For the hydrogen bonded ice, formamide, and acetamide crystals, MP2 calculations extrapolated to the complete-basis-set limit provide good accuracy. However, MP2 exhibits difficulties for crystals such as benzene and imidazole, where pi-stacking dispersion interactions are important, and post-MP2 corrections determined from small-basis-set CCSD(T) calculations are required to achieve chemical accuracy. Using these techniques, accurate crystal lattice energy predictions for small-molecule organic crystals are feasible with currently available computing power.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据