4.6 Article

Lower Limit of Interfacial Thermal Resistance across the Interface between an Imidazolium Ionic Liquid and Solid Surface

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 122, 期 38, 页码 22194-22200

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.8b06974

关键词

-

资金

  1. Beijing Natural Science Foundation [2184124]
  2. National Natural Science Foundation of China [21776278, 21606232, 11502217, 91434203]
  3. Strategic Priority Research Program of the CAS [XDA 21030500]
  4. China Postdoctoral Science Foundation [2015M570854, 2016T90949]
  5. Youth Training Project of Northwest AF University [Z109021600]

向作者/读者索取更多资源

Understanding of energy transport across the solid liquid interface is essential for the rational design of efficient heat dissipation capabilities. In this work, we show that the molecular orientation of liquid near the solid surface dominates the thermal transport across the imidazolium ionic liquids (IL)/graphene interface via molecular dynamics simulations. The molecular orientation is defined as the parallelism between the imidazole ring in IL and graphene and is controlled by wettability of graphene. Interfacial thermal resistance (ITR) will decrease linearly with the parallelism, which is suitable for IL with different tail chain length (2, 4, 6, and 8). From the linear relationship, a lower limit of ITR for the IL graphene interface can be predicted, which is on the order of similar to 6 m(2) K/GW and stands for the lower bound of ITR across the solid liquid interface. Furthermore, it is indicated that the parallel imidazole ring in IL facilitates the thermal transport via shifting the dominating vibrational modes to a higher frequency (similar to 15 THz). These findings show that the molecular orientation can be an effective factor to control the interfacial thermal transport, which can shed light on the future rational designs of some key chemical engineering processes, such as IL-based coolants, batteries, nanoelectrical devices, and so on.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据