4.8 Article

Photon-Inhibited Topological Transport in Quantum Well Heterostructures

期刊

PHYSICAL REVIEW LETTERS
卷 115, 期 10, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.115.106403

关键词

-

资金

  1. NSERC
  2. FQRNT
  3. Vanier Canada Graduate Scholarship

向作者/读者索取更多资源

Here we provide a picture of transport in quantum well heterostructures with a periodic driving field in terms of a probabilistic occupation of the topologically protected edge states in the system. This is done by generalizing methods from the field of photon-assisted tunneling. We show that the time dependent field dresses the underlying Hamiltonian of the heterostructure and splits the system into sidebands. Each of these sidebands is occupied with a certain probability which depends on the drive frequency and strength. This leads to a reduction in the topological transport signatures of the system because of the probability to absorb or emit a photon. Therefore when the voltage is tuned to the bulk gap the conductance is smaller than the expected 2e(2)/h. We refer to this as photon-inhibited topological transport. Nevertheless, the edge modes reveal their topological origin in the robustness of the edge conductance to disorder and changes in model parameters. In this work the analogy with photon-assisted tunneling allows us to interpret the calculated conductivity and explain the sum rule observed by Kundu and Seradjeh.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据