4.6 Article

Shape-Dependent Two-Photon Photoluminescence of Single Gold Nanoparticles

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 118, 期 25, 页码 13904-13911

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp502038v

关键词

-

资金

  1. DSTA Singapore [DSTA-NUS-DIRP/9010100347]
  2. National Research Foundation, Prime Minister's Office, Singapore, under its Competitive Research Programme (CRP) [NRF-CRP10-2012-04]

向作者/读者索取更多资源

Gold (Au) nanoparticles that display strong two-photon photoluminescence (TPPL) are attractive contrast agents for noninvasive live cell/tissue imaging with deep penetration because of their excellent biocompatibility and low cytotoxicity. The TPPL properties of Au nanoparticles are strongly dependent on the particle shape. As chemically prepared nanoparticles are generally inhomogeneous, conventional ensemble-based TPPL measurements can only give averaged results of particles of different morphologies. Single-particle spectroscopy can avoid the complication induced by the sample inhomogeneity in ensemble measurements and help to establish the morphology property relationship. Here we have investigated the scattering spectra and TPPL properties of Au nanoparticles of different shapes on the single particle level and explored their potential applications in cancer cell imaging. Au nanoparticles of five different shapes (nanospheres, nanocubes, nanotriangles, nanorods, and nanobranches) with similar dimensions have been chosen for the study. The TPPL spectra of these Au nanoparticles were found to be strongly modulated by plasmon resonance. TPPL intensity increases in the order of nanospheres, nanocubes, nanotriangles, nanorods, and nanobranches. The averaged TPPL intensity of a single Au nanobranch is 47750 times that of a single Au nanosphere. Two-photon action cross sections of single Au NSs, Au NCs, Au NTs, Au NRs, and Au NBs were estimated to be similar to 83,similar to 500,similar to 1.5 x 10(3), X 10(4), and similar to 4.0 x 10(6) GM, respectively. Laser-induced melting experiments on single Au nanobranches demonstrate that the tips played an important role in the observed strong TPPL. Application of these Au nanobranches as excellent two-photon imaging contrast agents has been demonstrated on HepG2 cancer cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据