4.6 Article

Charge Separation in PCPDTBT:PCBM Blends from an EPR Perspective

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 118, 期 49, 页码 28482-28493

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp509650v

关键词

-

资金

  1. DFG [SPP 1601]
  2. Helmholtz Association (Energie-Allianz Hybrid-Photovoltaik)

向作者/读者索取更多资源

Using time-resolved electron paramagnetic resonance (EPR) spectroscopy in conjunction with optical excitation we study charge separation in conjugated polymers blended with [6,6]-phenyl C61-butyric acid methyl ester (PCBM). A direct comparison between samples comprising poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (C-PCPDTBT) and their analogues containing poly[(4,4'-bis(2-ethylhexyl)dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-(4,7-bis(2-thienyl)-2,1,3-benzothiadiazole)-5,5'-diyl] (Si-PCPDTBT) reveals a remarkable influence of the bridging atom (carbon vs silicon) in the polymer on the EPR spectra. While the EPR signatures of photogenerated positive polarons in C- and Si-bridged PCPDTBT are virtually identical, significant differences are observed with respect to the spin-relaxation behavior. The spinlattice relaxation time of positive polarons in C-PCPDTBT at low temperature (T = 80 K) is found to be more than two orders or magnitude longer than in the Si-bridged polymer derivative. This surprisingly slow relaxation can be rationalized by polarons trapped in defect states that seem to be absent (or are present in a substantially smaller concentration) in blends comprising Si-PCPDTBT. Transient EPR signals attributed to charge transfer (CT) states and separated polarons are smaller in the blends with C-PCPDTBT as compared to those with the silicon-bridged polymer. We propose that triplet formation occurs via the CT state, thus diminishing the probability that the CT state forms free charge carriers in blends of C-PCPDTBT with PCBM. This hypothesis is confirmed by direct detection of triplet excitons in C-PCPDTBT:PCBM blends. The shape of the transient EPR spectra reveals that the triplet excitons are, in contrast to those formed in pristine polymer films, not generated by direct intersystem crossing but result from back electron transfer through CT state recombination. The strong triplet signal is not observed in blends containing the Si-bridged polymer, indicating efficient singlet exciton splitting and subsequent charge carrier separation at the Si-PCPDTBT/PCBM interface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据