4.6 Article

Effect of Surface Charge on the Resistive Pulse Waveshape during Particle Translocation through Glass Nanopores

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 118, 期 5, 页码 2726-2734

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp412148s

关键词

-

资金

  1. National Science Foundation [CHE-0616505]

向作者/读者索取更多资源

This paper describes a fundamental study of the effect of electrostatic interactions on the resistive pulse waveshape associated with translocation of charged nanoparticles through a conical-shaped, charged glass nanopore. In contrast to single-peak resistive pulses normally associated with resistive-pulse methods, biphasic pulses, in which the normal current decrease is preceded by a current increase, were observed in the current-time recordings when a high negative potential (lower than -0.4 V) is applied between the pore interior and the external solution. The biphasic pulse is a consequence of the offsetting effects of an increased ion conductivity induced by the surface charge of the translocating particle and the current decrease due to the volume exclusion of electrolyte solution by the particle. Finite-clement simulations based on the coupled Poisson-Nernst-Planck equations and a particle trajectory calculation successfully capture the evolution of the waveshape from a single resistive pulse to a biphasic response as the applied voltage is varied. The simulation results demonstrate that the surface charges of the nanopore and the particle are responsible for the voltage-dependent shape evolution. Additionally, the use of high ionic strength solution or high pressures to drive particle translocation was found to eliminate the biphasic response. The former is due to the screening of the electrical double layer, while the latter results from the solution flow preventing formation of an equilibrium double layer ion distribution within the nanopore, similar to the previously reported elimination of ion current rectification when solution flows through a nanopore.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据