4.6 Article

Theoretical Study on the Oxidation Mechanism and Dynamics of the Zigzag Graphene Nanoribbon Edge by Oxygen and Ozone

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 118, 期 19, 页码 10400-10407

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp500633w

关键词

-

向作者/读者索取更多资源

Graphene nanoribbons (GNRs), as an emerging class of material, hold great potential for the future high speed and low power electronic and spintronic devices. The fabrication of GNRs is of the utmost interest in terms of graphene based device research. Chemical narrowing of GNRs by oxidation is a promising technique in producing nanoribbons of desired widths. In this article, we hope to elucidate the etching mechanism of zigzag GNR (ZGNR) edge by oxidation through theoretical investigations. The oxidation mechanisms and dynamics of the ZGNR edge by O-2 and O-3 are fully revealed by density functional theory and statistical theory. The relationship between the reaction time and pressure as well as temperature is estimated dynamically. These theoretical results successfully interpret the recent experimental results and can be further used to predict the appropriate oxidation conditions for the precision etching of ZGNRs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据