4.6 Article

Molecular Dynamics Simulation of Heat Transfer from a Gold Nanoparticle to a Water Pool

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 118, 期 2, 页码 1285-1293

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp410054j

关键词

-

资金

  1. China Scholarship Council
  2. National Science Foundation of China [51228601]
  3. 111 Project [B12034]

向作者/读者索取更多资源

Heat transfer from nanoparticles to a surrounding liquid pool is an essential process for many applications. This work investigates the heat transfer process upon a continuous wave laser heating to a gold nanoparticle (GNP) in a water pool through molecular dynamics (MD) simulations based on realistic potentials. The interactions among gold atoms are described by the embedded atom method (EAM) potentials, both the rigid and flexible TIP3P water models are examined, and a modified Lennard-Jones potential is used for the interaction between the GNP and water. The results show that the interfacial thermal conductance is influenced by the selection of different water models and the interfacial wettability. The interfacial thermal conductance is smaller but increases slightly with the increase of heat flux for the flexible water model, while it keeps almost constant for the rigid model. Increasing the wettability between the particle and the fluid reduces the interfacial resistance. The rise of the interfacial water temperature is limited, due to the constraint of the boundary conditions, and no phase change in the water near the GNP is observed in the current simulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据