4.6 Article

Trends in Atomic Adsorption on Pt3M(111) Transition Metal Bimetallic Surface Over layers

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 118, 期 16, 页码 8342-8349

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp410607k

关键词

-

资金

  1. National Science Foundation [CBET-0730841, CBET-0731020, CBET-1264963]

向作者/读者索取更多资源

The general trends in adsorption behaviors of atomic H, N, O, and S on pure transition metal and bimetallic Pt transition metal overlayers on Pt(111) are investigated, from first principles. Consistent with d-band theory, the adsorbate binding energy on pure transition metal overlayers increases monotonically when the group number of the transition metal decreases. In contrast, bimetallic overlayers show a qualitatively different behavior for trends in adsorption. Using model Pt3M(111) bimetallic surface overlayers, we find the binding of atomic N, 0, and S to the Pt3M overlayers increases first and then decreases when moving left in the periodic table. We correlate the different binding energy trends in terms of the change in adsorption geometry resulting from the competition between the adsorbate metal interactions and formation of Pt3M surface alloys. Charge transfer between the surface atoms and the adsorbates is much larger for early transition metals, leading to the different trends in adsorbate binding energies on Pt3M overlayers with early transition metal M. We also find the surface segregation tendencies of solute metals M are influenced by the binding strength of the adsorbates to the alloy overlayers. O adsorbates qualitatively change the segregation tendency of early transition metals to segregate to the Pt(111) surface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据