4.6 Article

Semiconductors Used in Photovoltaic and Photocatalytic Devices: Assessing Fundamental Properties from DFT

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 118, 期 12, 页码 5997-6008

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp409724c

关键词

-

向作者/读者索取更多资源

The photovoltaic and photocatalytic systems generally use at least one semiconductor in their architecture which role is to absorb the light or to transport the charge carriers. Despite the large variety of working principles encountered in these systems, they share some fundamental steps such as light absorption, exciton dissociation, and charge carrier diffusion. These phenomena are governed by fundamental properties of the semiconductor like the bandgap, the dielectric constant, the charge carrier effective masses, and the exciton binding energy. The ability of density functional theory to compute all of these properties is evaluated. From the particularly good results obtained with the HSE06 functional, it can be concluded that DFT is a reliable tool for the evaluation and prediction of these key properties which open nice perpectives for in silico design of improved semiconductors for solar energy application. In the light of these calculations, some experimental observations on the difference of efficiencies between semiconductors like TiO2 anatase and rutile or ZnO are interpreted.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据