4.6 Article

Electroreduction of Carbon Dioxide to Methane on Copper, Copper-Silver, and Copper-Gold Catalysts: A DFT Study

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 117, 期 16, 页码 8262-8268

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp400937e

关键词

-

资金

  1. National Nanotechnology Center (NANOTEC)
  2. Thailand Research Funding (TRF)

向作者/读者索取更多资源

The electrochemical reduction of CO2 is a promising process capable of efficiently recycling CO2 waste and converting it into hydrocarbon fuel. To date, copper is the best metal catalyst; however the overpotential to achieve this reaction on Cu is excessively high. It follows that the development of a catalyst to efficiently catalyze the conversion with a low overpotential at a reasonable current density is needed. Many aspects of the molecular details of the reaction are still unclear. In this work, DFT calculations are applied to investigate CO2 electroreduction to CH4 over Cu3Ag and Cu3Au stepped surfaces (211) compared to that over Cu(211). In the resulting analysis, the Cu3Ag surface shows a slightly lower overpotential and suppresses OH poisoning compared to the Cu surface, yet the selectivity toward H-2 increases. The Cu3Au is not a good candidate due to higher overpotential and a relatively weak CO adsorption resulting in CO desorption rather than further reduction. The CO desorption can also be problematic on Cu3Ag as well. The thermodynamics and kinetics of the nonelectrochemical hydrogenations are also examined to explore alternative paths which might result in an absence of formaldehyde intermediate production during CO2 reduction on Cu.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据