4.6 Article

Electrochemical CO2 and CO Reduction on Metal-Functionalized Porphyrin-like Graphene

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 117, 期 18, 页码 9187-9195

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp306172k

关键词

-

资金

  1. Danish Ministry of Science, Technology and Innovation
  2. Danish Center for Scientific Computing
  3. Danish Council for Technology and Innovation's FTP program
  4. Strategic Electrochemistry Research Center

向作者/读者索取更多资源

Porphyrin-like metal-functionalized graphene structures have been investigated as possible catalysts for CO2 and CO reduction to methane or methanol. The late transition metals (Cu, Ag, Au, Ni, Pd, Pt, Co, Rh, Ir, Fe, Ru, Os) and some p (B, Al, Ga) and s (Mg) metals comprised the center of the porphyrin ring. A clear difference in catalytic properties compared to extended metal surfaces was observed owing to a different electronic nature of the active site. The preference to bind hydrogen, however, becomes a major obstacle in the reaction path. A possible solution to this problem is to reduce CO instead of CO2. Volcano plots were constructed on the basis of scaling relations of reaction intermediates, and from these plots the reaction steps with the highest overpotentials were deduced. The Rh-porphyrin-like fimctionalized graphene was identified as the most active catalyst for producing methanol from CO, featuring an overpotential of 0.22 V. Additionally, we have also examined the hydrogen evolution and oxidation reaction, and in their case, too, Rh-porphyrin turned out to be the best catalyst with an overpotential of 0.15 V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据