4.6 Article

Solvate Structures and Computational/Spectroscopic Characterization of Lithium Difluoro(oxalato)borate (LiDFOB) Electrolytes

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 117, 期 11, 页码 5521-5531

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp309102c

关键词

-

资金

  1. U.S. Department of Energy (DOE) Batteries for Advanced Transportation Technologies (BATT) Program [DE-AC02-05-CH11231]
  2. Swedish Energy Agency via a VR/STEM grant
  3. Department of Chemistry of North Carolina State University
  4. State of North Carolina

向作者/读者索取更多资源

Lithium difluoro(oxalato)borate (LiDFOB) is a relatively new salt designed for battery electrolyte usage. Limited information is currently available, however, regarding the ionic interactions of this salt (i.e., solvate formation) when it is dissolved in aprotic solvents. Vibrational spectroscopy is a particularly useful tool for identifying these interactions, but only if the vibrational bands can be correctly linked to specific forms of anion coordination. Single crystal structures of LiDFOB solvates have therefore been used to both explore the DFOB-center dot center dot center dot Li+ cation coordination interactions and serve as unambiguous models for the assignment of the Raman vibrational bands. The solvate crystal structures determined indude (monoglyme)(2):LiDFOB, (1,2-diethoxyethane)(3/2):LiDFOB, (acetonitrile)(3):LiDFOB, (acetonitrile)(1):LiDFOB, (dimethyl carbonate)(3/2):LiDFOB, (succinonitrile)(1):LiDFOB, (adiponitrile)(1):LiDFOB, (PMDETA)(1):LiDFOB, (CRYPT-222)(2/3):LiDFOB, and (propylene carbonate)(1):LiDFOB. DFT calculations have been incorporated to provide additional insight into the origin (i.e., vibrational modes) of the Raman vibrational bands to aid in the interpretation of the experimental analysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据