4.6 Article

Activation and Stabilization of Nitrogen-Doped Carbon Nanotubes as Electrocatalysts in the Oxygen Reduction Reaction at Strongly Alkaline Conditions

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 117, 期 46, 页码 24283-24291

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp4059438

关键词

-

资金

  1. Federal Ministry of Education and Research (BMBF) [03X0207C]
  2. China Scholarship Council

向作者/读者索取更多资源

Nitrogen-doped carbon nanotubes (NCNTs) are highly active electrocatalysts in the oxygen reduction reaction (ORR) at alkaline conditions. However, the initial activation and stabilization of NCNTs have rarely been investigated at industrially relevant conditions. Three types of NCNTs were synthesized by catalytic growth (NCNT-growth) or posttreatment of oxygen-functionalized CNTs with NH3 (NCNT-NH3) or aniline (NCNT-aniline). The obtained NCNTs were treated in 10 M KOH at 80 degrees C for 5 h, and the formation of oxygen groups by alkaline treatment and their interaction with existing nitrogen groups was analyzed. X-ray photoelectron spectroscopy showed that the concentrations of pyridinic and quaternary nitrogen increased in NCNT-growth due to the KOH treatment accompanied by the decrease of pyrrolic nitrogen, whereas the nitrogen groups changed differently in NCNT-NH3 and NCNT-aniline. NCNT-NH3 showed the highest ORR activity before alkaline treatment. After the treatment, the activity of NCNT-growth was higher, whereas those of NCNT-NH3 and NCNT-aniline were lower. These results were found to be correlated with changes in the nitrogen groups caused by alkaline treatment. Furthermore, NCNTs showed different C=O/C-O ratios after alkaline treatment as compared to a strong increase of C-O in CNTs, indicating that the presence of nitrogen in NCNTs influences the formation of oxygen groups on carbon and surface oxidation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据