4.6 Article

Spin Transport and Magnetic Correlation Parameters for Graphene-like Nanocarbon Sheets Doped with Nitrogen

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 117, 期 51, 页码 27105-27113

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp407262w

关键词

-

资金

  1. Ministry of Defense, Government of India

向作者/读者索取更多资源

Globally, graphene magnetism has captivated the attention of researchers in recent years. To obtain magnetic ordering, irregularities in the carbon network, like defects, adatoms, etc., are essential. Herein, we report on spin transport and magnetic correlations in graphene-like nanocarbon sheets (GNCs) that were doped with nitrogen by use of tetrakis(dimethylamino)ethylene (TDAE). The spin transport measurements, performed by electron spin resonance technique, showed that both spin-spin and spin-lattice relaxation times are increased by nitrogen doping. The magnetic correlations, measured on a vibrating sample magnetometer, showed that ordering parameters are reduced for nitrogen-loaded GNCs. Chemical analysis, carried out via electron spectroscopy, revealed that nitrogen atoms exchange couples electron-to-hole with the carbon network Analysis of I-V measurements showed that higher-order resistance is appreciably decreased for nitrogen-doped GNCs. The observed decrease is due to an increase in nonbonding states baying small local density. After doping, states in this region may be localized pi spin populated around the doped region. By and large, the approximately 20% magnetization that exists in GNCs is found to be reduced to 5% by introduction of nitrogen.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据