4.7 Article

Thermodynamics of the mesoscopic thermoelectric heat engine beyond the linear-response regime

期刊

PHYSICAL REVIEW E
卷 92, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.92.042165

关键词

-

资金

  1. Advanced Leading Graduate Course for Photon Science (ALPS)
  2. University of Tokyo
  3. Japan Society for the Promotion of Science [15K05200, 15K05207, 26400409]
  4. Grants-in-Aid for Scientific Research [15K05200, 15K05207, 26400409] Funding Source: KAKEN

向作者/读者索取更多资源

Mesoscopic thermoelectric heat engine is much anticipated as a device that allows us to utilize with high efficiency wasted heat inaccessible by conventional heat engines. However, the derivation of the heat current in this engine seems to be either not general or described too briefly, even inappropriately in some cases. In this paper, we give a clear-cut derivation of the heat current of the engine with suitable assumptions beyond the linear-response regime. It resolves the confusion in the definition of the heat current in the linear-response regime. After verifying that we can construct the same formalism as that of the cyclic engine, we find the following two interesting results within the Landauer-Buttiker formalism: the efficiency of the mesoscopic thermoelectric engine reaches the Carnot efficiency if and only if the transmission probability is finite at a specific energy and zero otherwise; the unitarity of the transmission probability guarantees the second law of thermodynamics, invalidating Benenti et al.'s argument in the linear-response regime that one could obtain a finite power with the Carnot efficiency under a broken time-reversal symmetry [Phys. Rev. Lett. 106, 230602 (2011)]. These results demonstrate how quantum mechanics constrains thermodynamics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据