4.6 Article

Density Functional Theory Study of an Oxygen Reduction Reaction on a Pt3Ti Alloy Electrocatalyst

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 117, 期 14, 页码 7107-7113

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp400158r

关键词

-

资金

  1. Chemical Sciences Research Programs, Office of Basic Energy Sciences, U.S. Department of Energy [DE-FG02-09ER16093]

向作者/读者索取更多资源

First-principles density functional theory calculations were performed to investigate the pathway of oxygen reduction reaction (ORR) on a Pt surface-segregated Pt3Ti(111) surface. Our calculation results indicate that the ORR intermediates (H, O, OH, O-2, OOH, and H2O) would bind weakly on the Pt3Ti(111) surface compared to those on the pure Pt(111) surface. The possible ORR mechanism on the Pt3Ti(111) surface is elucidated by calculating the activation energies for all of the possible elementary reaction steps in ORR. We predict that the ORR on the Pt3Ti(111) surface proceeds via a H2O2 dissociation mechanism. Importantly, the activation energy for the rate determining step in the H2O2 dissociation mechanism on the Pt3Ti(111) surface is significantly lower than the corresponding value on the pure Pt(111) surface. This provides an explanation for the experimentally observed superior ORR performance of Pt3Ti electrocatalyst in comparison to pure Pt electrocatalyst. Furthermore, we studied the degradation behavior of Pt3Ti electrocatalyst by evaluating the electrochemical potential shift of surface Pt dissolution and the formation energy of a a-PtO2 layer on the Pt3Ti(111) surface. Our computations predict an enhanced stability of the Pt3Ti(111) surface against surface Pt dissolution and surface oxidation in comparison to that of the pure Pt(111) surface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据