4.6 Article

First-Principles Study of Alkali and Alkaline Earth Ion Intercalation in Iron Hexacyanoferrate: The Important Role of Ionic Radius

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 117, 期 41, 页码 21158-21165

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp4078689

关键词

-

向作者/读者索取更多资源

Hexacyanoferrate compounds recently have attracted much interest because of their potential as aqueous and nonaqueous battery cathodes in the application of large-scale energy storage. Here, the feasibility to use iron hexacyanoferrate, Fe[Fe(CN)(6)], as a cathode candidate for nonaqueous rechargeable batteries is assessed with first-principle calculations. The structural deformation induced by the intercalation of alkali (Li+, Na+, K+, Rb+, Cs+) and alkaline earth (Mg2+, Ca2+, Sr2+, Ba2+) ions into Fe[Fe(CN)(6)] induces is negligible as compared to other Li-ion battery cathodes. The intercalation is strongly affected by the ionic radius of inserted species. With increasing ionic size, the most stable interstitial site changes from face-centered site to body-centered site. More importantly, the voltages for the intercalation are highly correlated to the ionic radius of the inserted species. The insertion of cations with larger ionic radius happens at higher voltages, and thus provides higher energy density. However, the intercalation of larger cations may also suffer from slower migration kinetics. Thus, it is important to choose inserted cation with appropriate ionic size to achieve the optimized performance. Overall, our results suggest hexacyanoferrate compounds are promising cathode materials for various types of nonaqueous rechargeable batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据