4.6 Article

Growth and Structure of Cu and Au on the Nonpolar ZnO(10(1)over-bar0) Surface: STM, XPS, and DFT Studies

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 117, 期 36, 页码 18386-18397

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp4037809

关键词

-

资金

  1. Center for Atomic Level Catalyst Design, an Energy Frontier Research Center
  2. U.S. Department of Energy, Office of Science and Office of Basic Energy Sciences [DE-SC0001058]

向作者/读者索取更多资源

The morphology and electronic structure of Cu and Au clusters deposited via thermal evaporation onto ZnO(10 (1) over bar0) substrates have been studied via scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). The initial stages of nucleation and growth (similar to 0.2 ML) of both Cu and Au are compared with density functional theory (DFT) calculations, which show an excellent agreement with the cluster morphologies observed by STM, with Cu nucleating three-dimensional (3D) islands even at small coverage while Au nucleates single-layer islands that grow layer by layer. DFT also gives insight into the diffusion behavior of Cu and Au adatoms on the ZnO substrate, showing strongly anisotropic diffusion barriers for Cu atoms which results in the experimentally observed preferential cluster nucleation along [0001] step edges, whereas Au shows no such anisotropy and Au clusters are observed to have no preferred nucleation sites. XPS results show a slight positive charging of the small Cu clusters at 0.2 ML coverage, which disappears at higher coverage. The single-layer Au islands formed at low coverage show some evidence of positive charging as well, which likewise disappears with increasing cluster size. Additionally, the Au clusters show a trend of increasing metallicity as the clusters grow and transition from single-layer islands to 3D structures, demonstrated by the increasing asymmetry in the Au 4f line shape as a function of Au coverage. In general, the observed charge transfer trends are supported by Bader charge analysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据