4.6 Article

Calculation of Chemical Potentials and Occupancies in Clathrate Hydrates through Monte Carlo Molecular Simulations

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 117, 期 36, 页码 18549-18555

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp405771u

关键词

-

向作者/读者索取更多资源

The flexibility of the water lattice in clathrate hydrates and guest-guest interactions has been shown in previous studies to significantly affect the values of the thermodynamic properties, such as chemical potentials and free energies. Here we describe methods for computing occupancies, chemical potentials, and free energies that account for the flexibility of water lattice and guest-guest interactions in the hydrate phase. The methods are validated for a wide variety of guest molecules, such as methane, ethane, carbon dioxide, and tetrahydrodfuran by comparing the predicted occupancy values of guest molecules with those obtained from isothermal isobaric semigrand Monte Carlo simulations. The proposed methods extend the van der Waals and Platteuw theory for clathrate hydrates, and the Langmuir constant is calculated based on the structure of the empty hydrate lattice. These methods in combination with development of advanced molecular models for water and guest molecules should lead to a more thermodynamically consistent theory for clathrate hydrates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据