4.6 Article

Carrier Recombination in Polymer Fullerene Solar Cells Probed by Reversible Exchange of Charge between the Active Layer and Electrodes Induced by a Linearly Varying Voltage

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 117, 期 7, 页码 3210-3220

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp306794j

关键词

-

资金

  1. Dutch Polymer Institute (DPI) [631]
  2. NanoNextNL

向作者/读者索取更多资源

The use of a voltage pulse that varies linearly with time and that is symmetric in time around t = 0 allows for simultaneous determination of (photo)capacitance and (photo)conductance of polymer solar cells. From the measured capacitance, an average density of reversibly extractable carriers is determined, and the result is compared to numerical drift-diffusion simulations. Results are in agreement with large charge densities near the contacts that can be exchanged with the electrode in a thermodynamically reversible manner upon changing the voltage. The combined determination of capacitance and conductance yields a relaxation time tau(rel) for photogenerated charge carriers. Results on thermally annealed poly(3-hexylthiopene):fullerene bulk heterojunction solar cells indicate tau(rel) similar to 2 mu s, limited by extraction and not significantly affected by bimolecular recombination under intensities up to 1 sun. In contrast, for small bandgap poly(diketopyrrolopyrrole-alt-quinquethiophene)-fullerene solar cells with similar to 5% power conversion efficiency, tau(rel) is limited by bimolecular recombination. This illustrates the need for very fast charge transport rates to avoid losses due to bimolecular recombination in solar cells with high charge generation rates. Conclusions from the charge exchange experiments are confirmed by time domain measurements using pulsed illumination.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据