4.7 Article

Persistent random walk of cells involving anomalous effects and random death

期刊

PHYSICAL REVIEW E
卷 91, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.91.042124

关键词

-

资金

  1. EPSRC [EP/J019526/1]
  2. EPSRC [EP/J019526/1] Funding Source: UKRI
  3. Engineering and Physical Sciences Research Council [EP/J019526/1] Funding Source: researchfish

向作者/读者索取更多资源

The purpose of this paper is to implement a random death process into a persistent random walk model which produces sub-ballistic superdiffusion (Levy walk). We develop a stochastic two-velocity jump model of cell motility for which the switching rate depends upon the time which the cell has spent moving in one direction. It is assumed that the switching rate is a decreasing function of residence (running) time. This assumption leads to the power law for the velocity switching time distribution. This describes the anomalous persistence of cell motility: the longer the cell moves in one direction, the smaller the switching probability to another direction becomes. We derive master equations for the cell densities with the generalized switching terms involving the tempered fractional material derivatives. We show that the random death of cells has an important implication for the transport process through tempering of the superdiffusive process. In the long-time limit we write stationary master equations in terms of exponentially truncated fractional derivatives in which the rate of death plays the role of tempering of a Levy jump distribution. We find the upper and lower bounds for the stationary profiles corresponding to the ballistic transport and diffusion with the death-rate-dependent diffusion coefficient. Monte Carlo simulations confirm these bounds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据