4.6 Article

Examining Solid Electrolyte Interphase Formation on Crystalline Silicon Electrodes: Influence of Electrochemical Preparation and Ambient Exposure Conditions

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 116, 期 37, 页码 19737-19747

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp307372m

关键词

-

资金

  1. program Understanding Charge Separation and Transfer at Interfaces in Energy Materials (EFRC:CST), an Energy Frontier Research Center
  2. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001091]
  3. Burroughs Wellcome Fund

向作者/读者索取更多资源

Since the potential for alloying lithium with silicon is outside the window of stability of common commercial electrolytes, silicon surfaces form an amorphous solid electrolyte interphase (SET) under applied potential, which hampers silicon's performance as a lithium-ion battery anode. We have investigated the composition, distribution, and ambient stability of the SEI formed on undoped silicon (001) wafers configured as model electrodes in three different electrochemical conditions using a reduced oxidation interface for transporting air-sensitive samples from a glovebox to an ultra-high-vacuum chamber for X-ray photoelectron spectroscopy (XPS) analysis. Variable potential cycling and step experiments included linear sweep voltammetry (LSV), cyclic voltammetry (CV), and chronoamperometry (CA). CV and LSV experiments on silicon electrodes scanned from open-circuit voltage to lithiation (3-0.01 V vs Li/Li+) showed a suppression of carbonate-containing species relative to CA experiments (potential step for 300 s at 0.01 V vs Li/Li+) in anoxic)(PS measurements. When silicon electrodes were exposed to ambient air, SEI layers reacted through both fluorination and combustion processes to produce different SET product distributions than those prepared under anoxic conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据