4.6 Article

DFT Study of CO2 Adsorption and Hydrogenation on the In2O3 Surface

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 116, 期 14, 页码 7817-7825

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp3004773

关键词

-

资金

  1. National Natural Science Foundation of China [20990223]
  2. U.S. Department of Energy [DE-FG02-05ER46231]
  3. U.S. Department of Energy (DOE) [DE-FG02-05ER46231] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

Catalytic conversion of, CO2 to liquid fuels or valuable chemicals is an attractive alternative to geological sequestration. In the present study, we applied density functional theory slab calculations in the investigation of the adsorption and hydrogenation of CO2 on the (110) surface of In2O3. Our results indicate that the adsorbed CO2 is activated, forming a surface carbonate species by combining with surface oxygen, and has an adsorption energy of -1.25 eV. Heterolytic dissociative adsorption of H-2 results in a surface hydroxyl from H binding the surface O site and a hydride from H binding the In site. The migration of H from the In site to the neighboring O site is energetically favorable but has a significant activation barrier of 1.32 eV. Water may adsorb on the surface either molecularly or dissociatively, with adsorption energy of -0.83 eV and -1.19 eV, respectively. Starting from CO2 coadsorbed with the H adatoms on the In2O3 surface, we examined two possible conversion pathways for CO2: (a) CO2 is hydrogenated by the H adatom on the In site to form a surface formate species (HCOO); (b) CO2 is protonated by the H adatom on the O site to form a surface bicarbonate species (COOH). Reaction a is endothermic by +0.33 eV, whereas b is exothermic by -0.78 eV. Although the formation of the bicarbonate species is energetically favorable, the subsequent step to form CO and OH is highly endothermic, with a reaction energy of +1.07 eV. Furthermore, the bicarbonate species can react with a surface hydroxyl easily, resulting in coadsorbed H2O and CO2. These results indicate that hydrogenation of CO2 to the formate species is favorable over protonation to the bicarbonate species on the In2O3 surface. These results are consistent with the experimental observations that the indium oxide based catalyst has a high CO2 selectivity and H2O resistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据